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1.  Introduction 

Array data structures are commonly used for storinq and 

processing binary images, with one array cell dedicated to 

storing the image color (black or white) at each pixel point. 

Tree data structure.- may also be used for storing two-dimen- 

sional images, and those can be considerably more efficient 

than arrays, both in computer memory requirements and proces- 

sing steps, when images contain large areas of a single color. 

Tree structures with four branches per node, quadtrees, 

have been developed for images sampled on a rectangular grid 

(see, for example, [1,2]).  A tree structure with seven branches 

per node has been developed for images sampled on a hexagonal 

grid [7].  In this paper we examine a variety of branching patterns 

for hexagonally sampled images, and show that trees may be defined 

with 3, 4, 7, 9, 11, 12, and 13 or more branches per node.  Of 

these, 3, 4,7, and 13 permit patterns that are compact and sym- 

metric under 60 or 120 degree rotations. 

The triangular pattern obtained with three branches per 

node may have an advantages over quadtrees for some applications 

since image reduction from level to level of the tree is some- 

what less, namely 3:1 rather than 4:1.  The pattern obtained 

with 7 branches is hexagonal, so has the advantage that each 

node has six edge neighbors but no corner neighbors.  This uni- 

form neighbor feature is useful for image processing based on 

local patterns [3,4].  Patterns obtained with a larger number 

of branches are of less interest since image reduction is very 

rapid from level to level of the tree. 
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We consider only those trees in which the branching pat- 

tern is the same at each level, and which "cover" the plane, 

without overlap. The branching pattern of such a tree may be 

used as a generator pattern for a hierarchy or "pyramid" of 

hexagonal arrays.  Such structures are analogous to pyramids 

which have been developed for rectangular arrays [5,6]. Gene- 

rator patterns tessellate the hexagonal grid, and the centroids 

of the patterns form the nodes of a new hexagonal grid. The 

pyramid is generated by recursively tessellating the grids 

formed by previous tessellations. 

A node may be designated by its pyramid address (i,j,k), 

where k is the number, or level, of the array in the pyramid 

and i,j are its coordinates within that array.  Alternatively, 

it may be designated by its tree address (bN, t>N , ,... ,b,+1) , 

which is the sequence of branches one must take to move from 

the root of the tree, at level N, to the node itself, at level 

k.  The. correspondence between equivalent tree and pyramid ad- 

dresses is not trivial, as it is for the quadtree.  Therefore, 

a procedure will be given for translating one type of address 

into the other in the case of a seven-branch, hexagonal septtree. 
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2. Tessellating the Hexagonal Prld 

It is well known that hexagonal tiles, which are identical 

in size and orientation, tessellate a plane surface; they fully 

cover the surface, without overlap. We shall be concerned here 

not with tiles on continuous surfaces, but with "patterns" of 

nodes, on an next^onal grid.  Such a grid is shown in Figure la, 

with a diamond shaped pattern indicated as a group of four nodes 

connected by lines.  A pattern "tessellates the grid" if iden- 

tical copies of the pattern can be arranged so that they cover 

all grid nodes, and no node is covered by more than one pattern. 

The diamond pattern of Figure la has this property, as is demon- 

strated ir Figure lb.  Two other tessellations of the grid are 

shown in Figures 1c and Id. 

The centroids of patterns which tessellate the hexagonal 

grid form the nodes of a new grid. These are indicated by open 

circles in Figure 1.  If the grid formed by the centroids is 

itself hexagonal, then it also may be tessellated by the same 

pattern, and the tessellation process can be repeated recur- 

sively.  This is the fundamental operation in the formation of 

a tree or pyramid. 

The first objective of the present paper is to discover those 

patterns which may be used in tree construction. Two constraints 

on such patterns are already clear: 

  



Cl) The pattern should tessellate the hexagonal grid. 

C2) The centroids of patterns which tessellate the hexa- 

gonal grid should themselves form a hexagonal grid. 

Two other constraints may be added to eliminate trees 

with undesirable properties: 

C3) The pattern should have the same orientation everywhere 

in the tessellation. 

C4) The pattern should be "compact".  In particular it 

should only connect nodes which are immediate neighbors 

in the hexagonal grid. 

Note that none of the patterns in Figure 1 satisfy these 

constraints. While all tessellate the grid (Cl), the centroids 

of the patterns in Figures lb and 1c do not form a hexagonal 

grid (C2), the pattern in Figure 1c does not have the same orien- 

tation everywhere (C3) , and the pattern of Figure Id is not 

compact (C4). 
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3. Derivation of Admissible Patterns 

Suppose that the nodes of a hexagonal grid are separated 

by a unit distance. Consider patterns which connect n nodes. 

If such a pattern is to satisfy constraint C2, then the dis- 

tance between nodes in the grid of centroids must be Ai. This 

is the case because the new grid will have 1/n as many nodes as 

the original, yet these nodes must be distributed over the same 

area. 

Next, suppose we label the n nodes in the pattern by letters 

a, b, c, ....  as has been done for the diamond pattern in 

Figure la.  Since, by constraint C3, all patterns must have the 

same orientation, the 'a' nodes in neighboring patterns must 

also be separated by /n. 

Let an 'a' node of a pattern coincide with the node numbered 

'0' in Figure 2a.  The 'a' node of a neighboring pattern should 

then coincide with one of the nodes 1, 2, 3,....  By computing 

the distance to these nodes we may determine permissible values 

of n.  (We need only consider nodes in a 30° arc centered on 

node '0' since nodes outside the arc are congruent to nodes 

inside the arc under appropriate rotations and reflections.) 

The distances to the first 8 numbered nodes and the correspond- 

ing values of n are shown in Table 1. 

The data in the table show that pattern sizes 3, 4, and 7 

are admissible on the hexagonal grid, while 2, 5, and 6 are not. 
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Pattern size 1 is admissible but not of interest since the 

grid of centroids is identical to the original. Patterns of 

certain larger sizes, 9, 12, 13, 16 ... , are also admissible, 

but these are rather large for use in trees, and will not be 

considered further. 

The above argument also allows us to determine the exact 

position of the 'a' nodes in neighboring patterns of any admis- 

sible tessellation. Thes'2 patterns are shown for n =» 3, 4, and 

7 in Figure 2.  The patterns are unique except for translations, 

rotations or reflections. 

Note that the grids formed by the patterns for n = 3 and 7 

are tilted with respect to the original grid.  The degree of 

tilt is indicated in Table 1.  This tilt is independent of other 

details of the pattern, which as yet have not been specified. 

With the positions of the 'a' nodes known for each n, all 

of the admissible patterns satisfying constraints Cl to C4 

are readily generated.  This is done by "growing" a pattern 

around its 'a' node: nodes 'b', 'c', ... are added one at a time 

to each instance of the pattern so that each node added to a 

given pattern must adjoin one neighbor already in the pattern 

(C4) and not fall on top of any node already in that pattern 

or in neighboring patterns (Cl).  Some of these admissible 

patterns are shown in Figure 3. 

Most admissible patterns are rather irregular in shape. 

These are not well suited for tree construction when we want 
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high level nodes, or subtrees (these are defined below) to repre- 

sent local regions of an image. Therefore we may wish to con- 

sider only that pattern for each size n which is most compact, 

i.e. that pattern which has maximum contact among its members 

and, hence, minimum contact with nodes outside the pattern. 

These patterns are unique for n » 3, 4, and 7, and are shown in 

Figure 4a, b, and c.  Figure 4d shows an alternative size 4 

pattern which is not the most compact pattern of this size, but 

which has a 3 point "star" symmetry since it is congruent to 

itself under 120° rotations. 

It should be noted that the diamond pattern in Figure 4b is 

identical to that in Figure lb, but that the arrangement of 

neighboring patterns on the grid is slightly different in the 

two cases.  For this reason the centroids of the diamonds in 

Figure 4 form a hexagonal grid but those in Figure 1 do not. 

   -.   . ,    - ^ 



4.  Patterns as Pyramid Generators 

The admissible patterns described in the previous section 

all have the property that when the patterns are used to tes- 

sellate the hexagonal grid, their centroids form a new hexa- 

gonal grid. Let the original grid be called array 0, and let 

the new arra^ formed by the centroids of a pattern used to 

tessellate array 0 be called array 1. Since array 1 is also 

hexagonal it may be tessellated with the same pattern to form 

array 2. The procedure may be repeated to form progressively 

higher order arrays. The set of such arrays form a "pyramid", 

so call-1 because each higher array has fewer nodes than its 

predecessor by a factor of 1/n, where n is the size of the 

pattern used to generate the pyramid. 

Each node in a pyramid has a pyramid address which is spe- 

cified by a three-tuple (i,j,k). The last entry in the three- 

tuple, k, is the array number, or level of the node, in the 

pyramid.  The first two entries, i and j, give the node's column 

and row numbers within array k.  An hexagonal array has three 

major axes; two of these, x and y, are chosen in each array for 

enumerating rows and columns (see Figure 5). 

The axis of each array will be rotated with respect to the 

next lower array in the pyramid.  The angle of rotation, AS, is 

determined by the pattern size, n (see Table 1), although this 

rotation may be either clockwise or counterclockwise.  Let 9^ 

^n- 



be the rotation of the axis in array k relative to array 0. 

Then 6. will be kA9 if all rotations are counterclockwise and 

-kA6 if they are all clockwise.  However the direction of 

rotation may be alternated from level to level, in which case 

9, 0 for k even and +Ae for k odd. 

   „______ „__ __._.  : ^   . -    



5. Tiles defined for nodes of the pyramid 

Thus far -;e have considered the problem of tessellating 

the hexagonal grid with a pattern of nodes such that the cen- 

troids of the tessellation patterns become grid nodes of a new 

hexagonal grid.  It is possible to replace each node with a 

tile such that the tiles for the node at each level of the pyra- 

mid tessellate the plane. To do this we simply let the tile 

for the nodes in array 0 be the hexagon which has a diameter 

equal to the node separation at this level.  Then the tile for 

a node at level k, kX), is defined as the union of the tiles of 

the level k-1 nodes in the pattern which is centered at the 

level k node.  Such tiles are shown in Figure 6 for k = 0, 1, 

and 2 for the compact size-7 (hexagonal) pattern.  (Successively 

higher level tiles are outlined with successively broader lines.) 

Tiles defined in this way always tessellate the plane, as 

may be shown by induction.  It is well known that hexagonal 

tiles tessellate the plane (level k = 0).  Suppose the tiles at 

level k tessellate the plane.  We then group together those 

tiles associated with the nodes of the pattern used to generate 

the pyramid.  Since, by definition, this pattern tessellater the 

grid at this level, every tile is included in exactly one group, 

so these groups must also tessellate the plane.  These groups 

are just the tiles for level k+1 nodes, so level k+1 tiles also 

tessellate the plane. 
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Note in Figure 6 that the tiles formed by the hexagonal 

pattern (n»7) are approximately, but not exactly, hexagonal 

sxcept at level 0. 
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6. Tree Formation 

Tree structures which are analogous to the "quadtree" may 

now be defined on pyramids generated by admissible patterns. 

Since these trees are developed as a code for binary  lages, 

we first associate a binary value with each level zero node; 

its tile is either "black" or "white" as is appropriate for 

the hexagonally sampled image.  Next, we select a high level 

node which has a tile that completely encompasses the image or 

area of interest.  This node becomes the root of the tree.  Let 

N be the level of the root node.  The root is given a value of 

"black" if its tile is entirely black, or "white" if its tile 

is entirely white.  Otherwise its value is "gray".  We associate 

a set of n branches, or pointers, with a gray node, one for each 

level N-l node in the generator pattern centered at the root. 

Each of these nodes then becomes the root of a subtree of the 

tree.  Subtrees are assigned values of "black", "white", or 

"gray" in the same way.  If a subtree has value black or white 

then that subtree is a leaf and has no branches.  Each gray sub- 

tree has n branches and subtrees of its own.  The tree is com- 

plete when all of its branches end in leaves. 

Each node in a tree has a unique "tree address".  To obtain 

this address, we label the branch  at each node by a letter 

•a1 'b' 'c' ... according to the label given to that node in the 

generating pattern.  The tree address for a node at level k is 

n*- frliimr"jam^-^imimiii^^ -..■■... -.-■■ 



a sequence (bN, b^,... ,bk+1) of labels for the branches 

one must follow to move from the root node at level N to the 

destination node at level k. 
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7.  Translation between pyramid and tree addresses 

An unfortunate aspect of the tree and pyramid structures 

defined for hexagonal grids is that there is no simple rela- 

tion between the tree address of a node and its pyramid ad- 

dress, at least for cases in which there is an axis rotation 

between levels (e.g. for n = 3 or 7).  Therefore, to finish 

our examination of these data structures we shall describe a 

procedure for translating from a pyramid to tree address in the 

case of the "septtree", that is, when the generator is the 

hexagonal sizä-7 pattern.* 

Suppose we wish to find the tree address {bN, 
bM-.i ' • • •'bv+i) 

for a node with pyramid address (i, ,j, ,k), which is assumed to 

fall within the domain of the tree with root at level N.  Our 

procedure will be to first find the pyramid address (iv+i'Jv+i»k+l) 

of the level k+1 node which is the centroid of the pattern 

coverirg node (iv/Jw^)«  The position of the node in the pat- 

tern is then b. ...  The procedure is repeated to find progres- 

sively higher level branches.  We need only specify how the 

centroid address and branch number are obtained between the k 

and k+1 levels. 

Assume that the principal axes of levels k and k+1 are 

centered on a unique "origin" node at level k.  If the axis 

rotation is clockwise, as in Figure 5, then we observe that 

k+1 level node (n,m,k+l) falls on top of k level node (n,m,k) 

where 

*The reader is referred to [7] for an elegant algebra defined 
within the tree address domain. 

_____________ 



n ■ 2n + m 

m - 3m - n (Eq. la) 

(These relations may be checked with the aid of Figure 5.) 

If the rotation is counterclockwise then this relation is 

given by 

n - 3ß - A 

m = ß + 2^1 (Eq. lb) 

We are given (i. ,jk,k) and wish to find the centreid node 

^k+l'^k+l'^*1^"  In 5eneral this node will not be directly 

above the level k node in the sense described above.  However, 

equations (la) or (lb) can be used to obtain the level k+1 node 

nearest to the given level k node, and this nearest node will 

be the desired centroid. 

For clockwise rotations: 

ik+1 » Round[(3ik-Jk)/7] 

jk+1 = Round[(ik+2Jk)/7] 

r   " [ik+^k]M0D7 (Eq' 2a) 

And for counterclockwise rotations 

ik+1 - Round[(2ik+Jk)/7] 

jk+1 « Round[(3Jk-ik)/7] 

r   " [2ik^k]MOD7 (Eq- 2b) 

Here function "Round" simply rounds its argument to the nearest 

(larger or smaller) integer value.  The M0D7 function returns 

the remainder after its argument is divided by 7. 

. 



The remainder, r, may be used to obtain the branch bk+1. 

Let the nodes of the size 7 generator pattern be labeled 'a* 

'b' ... 'g' in the order shown for one such pattern in Figure 

5. The correspondence between r and b, , is given in Table 2. 

Once b.+1 and (itc+l'^k+l'
lc+1^ have been obtained from 

equations (1) or (2) and Table 2, the process is repeated to 

find b.+2, (ik+2fJk+2'
k+2)' and a11 higher level branch labels 

and node addresses until the root is reached at level N, and 

the tree address of (ii,'3v'^ ^s complete. 



8. A Final Observation 

Shmuel Peleg suggests that a good pattern for generating 

a tree or pyramid is one in which there is no node outside the 

pattern which is closer in geometric distance to its centroid 

than any node within the pattern. An outside node is allowed 

to be at the same distance as an inner node. This is true for 

the compact patterns of size n ■ 3»4,and 7 in Figure 4.  How- 

ever, if we apply the same criterion to higher level tiles we 

see that the constraint is always violated if we move to a suf- 

ficiently high level. For example a violation occurs at level 

3 for the n = 3 and 7 patterns and at level 2 for n = 4. A 

violation occurs for the standard quadtrse as it is defined on 

a rectangular grid at level 3.  Of these patterns the one which 

generates the largest tile without violations is the hexagonal 

n = 7 pattern. At level 2 this covers 49 level 0 nodes.  By 

contrast the largest coverage of a standard quadtree is only 

16 level 0 nodes. We conjecture that the hexagonal n = 7 pat- 

tern provides the largest compact tile, in the sense suggested 

by Peleg, of any admissible pattern defined c\  either hexagonal 

or rectangular grids. 
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Table 1: Admissible Pattern Sizes 

node distance n Ae 

1 1 0 

/I 3 30 

2 4 0 

/7 7 19 

3 9 0 

6 /n 12 30 

7 /IT 13 14 

8 4 16 0 

Table 2:  Branch Label Detenuined from r 

r ■ 

clockwise 

0 

a 

Lcounterclockwise    a 

1 

b 

d 

2 

d 

b 

3 

c 

c 

4 

f 

f 

5       6 

g      e 

e       g 
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Figure 4:  Compact admissible patterns of size 3(a), 4(b), and 7(c). 
Figure d shows an alternative size 4 patt rn which is "star" 
symmetric. 
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Figure 5: Coordinate system for specifying node locations in 
hexagonal grids. Open circles show the centroids of 
compact size 7 patterns used to tessellate the grid 
of black circles.  Note that the axes of the grid of 
centroids is rotated by 19.1 degrees with respect to 
that of the original grid. Pairs of numbers in paren- 
theses show the x,y location for a few closec1 circles, 
Pairs in brackets show locations of centroids. 

  



Figure 6:  Hierarchy of tiles for the size 7 compact pattern.  Tiles for 
level 0, 1 and 2 nodej are shown by progressively thicker outline* 
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